CLASS-3

Ocean and Offshore Navigation (O'Nav)

Plane Sailing

1). Using plane sailing formulae, find the final position in each case:-

Initial Position	Track	Distance
$35^{\circ} 42^{\prime} \mathrm{N}, 71^{\circ} 22^{\prime} \mathrm{W}$	308°	428^{\prime}
$40^{\circ} 06^{\prime} \mathrm{N} 56^{\circ} 07^{\prime} \mathrm{W}$	145°	377^{\prime}

2). Using plane sailing formulae, find the course and distance between each case.
A
a. $\quad 31^{\circ} 12^{\prime} \mathrm{N} 30^{\circ} 56^{\prime} \mathrm{W}$

33²7'N $25^{\circ} 03^{\prime} \mathrm{W}$
b. $\quad 18^{\circ} 48^{\prime} \mathrm{S} 89^{\circ} 12^{\prime} \mathrm{E}$
$23^{\circ} 34^{\prime} \mathrm{S} 86^{\circ} 51^{\prime} \mathrm{E}$
3). Using Plane sailing formulae, find the set and drift in each case.

D.R. Position

a. $45^{\circ} 18^{\prime} \mathrm{S} 000^{\circ} 21^{\prime} \mathrm{W}$
b. $58^{\circ} 20^{\prime} \mathrm{N} 093^{\circ} 21^{\prime} \mathrm{E}$

Observed Position
$44^{\circ} 56^{\prime} \mathrm{S} \quad 000^{\circ} 14^{\prime} \mathrm{E}$
$59^{\circ} 04^{\prime} \mathrm{N} \quad 092^{\circ} 58^{\prime} \mathrm{E}$

Parallel Sailing

1. Leaving Position $34^{\circ} 18^{\prime} \mathrm{S} 172^{\circ} 10^{\prime} \mathrm{E}$, a ship steams due East until longitude $151^{\circ} 20^{\prime} \mathrm{W}$ is reached. Find the distance steamed and the average speed if the steaming time is 2 days 15 hours 24 m .
2. From position $50000^{\prime} \mathrm{N} 8 \circ 00^{\prime} \mathrm{W}$, a ship steamed due West for 345 miles. Find the longitude of arrival.
3. A ship in south latitude, on longitude 48040^{\prime} E, steams due East for 2418 miles and arrives in longitude $90028^{\prime} \mathrm{E}$. Find the parallel of Latitude along which the ship steamed.
4. From position $52^{\circ} 33^{\prime} \mathrm{N} 144047^{\prime} \mathrm{W}$ a ship steamed 180 miles due South, 180 miles due East, 180 miles due North and 180 miles due West. Find the final position and the final distance from the starting point.
5. Find the speed of rotation of the earth's surface at:
(a) $80000^{\prime} \mathrm{N}$.
(b) $80000^{\prime} \mathrm{S}$
(c) $\quad 60000^{\prime} \mathrm{N}$
(d) The Equator.

Mercator Sailing

1. A vessel leaves position $20^{\circ} 14^{\prime} \mathrm{S} 9^{\circ} 43^{\prime} \mathrm{W}$ and makes good a ground track of 3160 T and a distance of 4135 miles. By Mercator Sailing calculate the arrival position.
2. A vessel leaves position $29^{\circ} 47 \mathrm{~N} 24^{\circ} 36.0^{\prime} \mathrm{W}$ and makes good a ground track of $2111^{\circ} \mathrm{T}$ and a distance of 960 miles. By Mercator Sailing calculate the arrival position.
3. A vessel leaves position $30^{\circ} 11^{\prime} \mathrm{N} 159^{\circ} 49^{\prime} \mathrm{E}$ and makes good a ground track of 1110 T and a distance of 4915 miles. By Mercator Sailing calculate the arrival position.
4. A vessel in position $22^{\circ} 31^{\prime} \mathrm{N}, 147^{\circ} 25^{\prime} \mathrm{E}$ receives a distress message from a vessel in position 11° $34^{\prime} \mathrm{N}, 155^{\circ} 26^{\prime} \mathrm{E}$. She is to proceed directly to assist the vessel in distress. What course must she steer and how long will it take to arrive on scene if her speed is 19.5 knts.
5. A vessel in position $13^{\circ} 18^{\prime} \mathrm{N}, 179^{\circ} 23^{\prime} \mathrm{W}$, steers a course of $219^{\circ}(\mathrm{T})$. In what longitude will the vessel cross the equator?

DAYS WORK

1. At noon on $14^{\text {th }}$ Sept, a ship in position $40^{\circ} 12.0^{\prime} \mathrm{N} 076^{\circ} 46.0^{\prime} \mathrm{W}$ set course $250^{\circ}(\mathrm{C})\left(\operatorname{Varn} 6^{\circ} \mathrm{W}\right.$, Devn $4^{\circ} \mathrm{W}$) at an engine speed of 16 kts . At 1600 , course was altered to 287° (C) (Varn $6^{\circ} \mathrm{W}$, Devn $2^{\circ} \mathrm{E}$) and engine speed was decreased to 14 kts . At 2200 , course was again altered to 340° (C) (Varn $5^{\circ} \mathrm{W}$, Devn $5^{\circ} \mathrm{E}$) and engine speed was maintained at 14 kts till 0600 next morning, when course was altered to 277° (C) (Varn $5^{\circ} \mathrm{W}$, Devn $2^{\circ} \mathrm{W}$) and speed increased to 15 kts and this course and speed was maintained till noon on $15^{\text {th }}$ Sept. Find EP on $15^{\text {th }}$ noon, the course and distance made good, if a current was setting $027^{\circ}(\mathrm{T})$ at 2 kts throughout.
2. On $16^{\text {th }}$ Jan a ship in position $00^{\circ} 10.0^{\prime} \mathrm{N} 068^{\circ} 09^{\prime} \mathrm{E}$ set courses as follows -

	Time	Co (C$)$	Varn	Devn	L'way $^{\prime}$ way	Wind	Log
i.	1200	126°	$4^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	3°	SW	000
ii.	1800	149°	$4^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	2°	NE	089
iii.	2300	210°	$5^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{W}$	3°	SE	168
iv.	0700	240°	$5^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	Nil	W	290
v.	1200	270°	$4^{\circ} \mathrm{E}$	0°	3°	N	368

A current set the $\mathrm{v} / \mathrm{I} 183^{\circ}(\mathrm{T})$ at 1.5 kts throughout. Find the EP at next noon and the course and distance made good?
3. At noon on $14^{\text {th }}$ Dec, a light house in $05^{\circ} 56.0^{\prime} \mathrm{N} 080^{\circ} 36.0^{\prime} \mathrm{E}$ bore $000^{\circ}(\mathrm{C})$, error $4^{\circ} \mathrm{W}$, distance 10 miles. Course was then set to 220° (C), Devn $1^{\circ} \mathrm{E}, \mathrm{Varn} 2^{\circ} \mathrm{W}, \log 0$. At 2000 , engines broke down and the log showing 82, was hauled in. At 2200, engines were repaired and course was reset to 200° (C) Devn nil, Varn
$2 \mid P a g e$
$2^{\circ} \mathrm{W}, \log 0$. Ship maintained this course till noon next day when log showed 140 . A current was estimated to set $350^{\circ}(\mathrm{T})$ at 2 kts throughout. Find the EP at noon on $15^{\text {th }}$ Dec ?
4. At noon on 2oth July, Pargo Point ($32^{\circ} 48.0^{\prime} \mathrm{N} 017^{\circ} 16.0^{\prime} \mathrm{W}$) bore $080^{\circ} \mathrm{C}$ ($) 10$ miles off while steaming 219° (C) (Devn $3^{\circ} \mathrm{E}$ Varn $18^{\circ} \mathrm{W}$). Ship maintained this course at a steady speed of 15 kts till next day. Clocks were retarded 12 minutes at 0200 hrs. Find the DR at 1200 hrs on $21^{\text {st }}$ July, if the fix then was $27^{\circ} 12.0^{\prime} \mathrm{N}$ $020^{\circ} 05.0^{\prime} \mathrm{W}$, find the set and drift / rate of current experienced during the above periods.
5. A ship steams the following courses by Gyro (error nil) -

Time	Co (G)	Speed
$13^{\text {th }}$ Jan $/ 1200$	236°	15.0
1700	284°	16.0
2000	262°	15.0
$14^{\text {th }}$ Jan 0400	198°	14.5

At 1800 on $13^{\text {th }}$ Jan, a light house in position $48^{\circ} 28.5^{\prime} \mathrm{N} 067^{\circ} 05.0^{\prime} \mathrm{E}$ bore 4 points on the starboard bow and at 1845 it was abeam. Find the $14^{\text {th }}$ noon DR, the course and distance made good noon to noon ?

GREAT CIRCLE SAILING

1. Find by great circle sailing the distance, the initial and final tracks from $22^{\circ} 10^{\prime} \mathrm{N} 74^{\circ} 56^{\prime} \mathrm{W}$ to $49^{\circ} 27^{\prime} \mathrm{N}$ $10^{\circ} 46^{\prime} \mathrm{W}$.
2. Find by great circle sailing the distance, the initial and final tracks from $37^{\circ} 06 \mathrm{~N} 126^{\circ} 46^{\prime} \mathrm{W}$ to $34^{\circ} 14^{\prime} \mathrm{N}$ $146^{\circ} 22^{\prime} \mathrm{W}$.
3. Find by great circle sailing the distance, the initial and final tracks from $04^{\circ} 07 \mathrm{~N} 98^{\circ} 55^{\prime} E$ to $41^{\circ} 00^{\prime} \mathrm{S}$ $33^{\circ} 58^{\prime} \mathrm{E}$
4. Find by great circle sailing the distance, the initial and final tracks from Balboa 08o 53'N 079o 30'W to Snares Island 47050'S 1670 50'E

COMPOSITE GREAT CIRCLE SAILING (NAPIERS' RULES)

1. Find the initial and final tracks on the great circle track between $51^{\circ} 23^{\prime} \mathrm{N} 09^{\circ} 36^{\prime} \mathrm{W}$ and $46^{\circ} 00^{\prime} \mathrm{N} 49^{\circ} 00^{\prime} \mathrm{W}$. Find also the latitude and longitude of the vertex.
2. Find the distance and initial and final tracks on the G.C. track between $33^{\circ} 52^{\prime} \mathrm{S} 151^{\circ} 16^{\prime} \mathrm{E}$ and $12^{\circ} 04^{\prime} \mathrm{S}$ $77^{\circ} 14$ 'W. Find also the Latitude of the point where the great circle track crosses the 180° meridian.
3. Find the initial and final track and also the distance on the G.C. track from position $35^{\circ} 55^{\prime} \mathrm{S} 37^{\circ} 21^{\prime} \mathrm{W}$ to position $27^{\circ} 14^{\prime} \mathrm{N} 52^{\circ} 39^{\prime} \mathrm{E}$. Find the latitude \& longitude of the vertex and the latitude in which the great circle crosses the longitude of $17^{\circ} 21^{\prime} \mathrm{W}$ and $22^{\circ} 39^{\prime} \mathrm{E}$.
4. a. Find the great circle distance and the initial track from position $40^{\circ} 42^{\prime} \mathrm{N} 10^{\circ} 05^{\prime} \mathrm{W}$ to position $40^{\circ} 42^{\prime} \mathrm{N}$ $50^{\circ} 15^{\prime} \mathrm{W}$.
b. Find the position where the vessel's true track becomes 270°.
c. Determine the difference in distance if the vessel had steamed along the parallel between the two positions.
5. A vessel leaves $47^{\circ} 50^{\prime} \mathrm{N} 52^{\circ} 06^{\prime} \mathrm{W}$ and follows a G.C. track towards $50^{\circ} 52^{\prime} \mathrm{N} 07^{\circ} 23^{\prime} \mathrm{W}$ making good a ground speed of 15 Knots.
a. Calculate the time taken to reach the most northerly latitude.
b. Calculate the expected position after steaming 1500 miles along the G.C. track.

Azimuth - Sun

1. On $11^{\text {th }}$ October at about 0930 LMT in DR Lat. $54^{\circ} 46^{\prime} \mathrm{N}$, Long. $000^{\circ} 17^{\prime} \mathrm{W}$ the sun bore $144^{\circ} \mathrm{C}$. A chronometer, known to be 4 m 18 s slow on GMT showed 9 h 32 m 14 s . If the variation is $9.5^{\circ} \mathrm{W}$, find the compass error and the deviation.
2. On $7^{\text {th }}$ January at about 1535 LMT in DR Lat. $32^{\circ} 48^{\prime}$ S, Long $31^{\circ} 10^{\prime} \mathrm{E}$ the sun was observed bearing $284^{\circ} \mathrm{C}$. A chronometer which was 3 m 14 s fast on GMT showed 1 h 35 m 27 s . If the variation was $21^{\circ} \mathrm{W}$, find the compass error and the deviation.
3. On $10^{\text {th }}$ June at 1421 LMT in DR Lat. $28^{\circ} 00^{\prime} \mathrm{N}$ Long $050^{\circ} 00^{\prime} \mathrm{E}$ the sun was observed bearing $261^{\circ} \mathrm{C}$. If the variation was $2.5^{\circ} \mathrm{E}$, find the compass error and the deviation.
4. On $10^{\text {th }}$ July at about 0800 LMT in DR Lat. $23^{\circ} 15^{\prime} \mathrm{N}$ Long. $31^{\circ} 36^{\prime} \mathrm{W}$ the sun was observed bearing $093^{\circ} \mathrm{C}$. The chronometer, which was 5 m 20 s slow on GMT showed 10 h 02 m 04 s . If variation is $10^{\circ} \mathrm{W}$ find the compass error and the deviation.

Azimuths - Stars

1. On $13^{\text {th }}$ September at 01 h 41 m 51 s GMT in DR Lat. $57^{\circ} 30^{\prime} \mathrm{N}$ Long. $002^{\circ} 00^{\prime}$ E the star DUBHE was observed bearing $028^{\circ} \mathrm{C}$. If the variation was $3^{\circ} \mathrm{E}$ find the compass error and the deviation.
2. On $24^{\text {th }}$ December at about 0146 LMT in DR Lat. $19^{\circ} 17^{\prime} \mathrm{S}$ Long. $155^{\circ} 32^{\prime} \mathrm{W}$ the star ALDEBARAN was observed bearing $300^{\circ} \mathrm{C}$. A chronometer, which was 2 m 12 s slow on GMT showed 12 h 08 m 19 s . If the variation was $2^{\circ} \mathrm{W}$, find the compass error and deviation.
3. On $26^{\text {th }}$ September at 0321 LMT in DR Lat. $25^{\circ} 33^{\prime} \mathrm{N}$ Long. $095^{\circ} 15^{\prime} \mathrm{W}$ the star FOMALHAUT was observed bearing $239^{\circ} \mathrm{C}$. If the variation was NIL, find the compass error and deviation.
4. On $17^{\text {th }}$ December at about 2115 LMT in DR Lat. $32^{\circ} 00$ 'S Long $49^{\circ} 43^{\prime} \mathrm{W}$ the star ALPHERATZ was observed bearing $333^{\circ} \mathrm{C}$. A chronometer, which was 5 m 03 s fast on GMT showed 0 h 39 m 29 s . If the variation was $8^{\circ} \mathrm{W}$, find the compass error and deviation.
5. On $27^{\text {th }}$ September at about 0230 LMT in DR Lat. $40^{\circ} 12^{\prime} \mathrm{N}$ Long. $136^{\circ} 15^{\prime} \mathrm{W}$ the star CAPELLA was observed bearing $050^{\circ} \mathrm{C}$. A chronometer, known to be correct on GMT showed 11 h 35 m 24 s . If the variation was $19^{\circ} \mathrm{E}$, find the compass error and deviation.

Azimuths - Planets

1. On $1^{\text {st }}$ Dec, PM at ship in DR $36^{\circ} 27^{\prime} \mathrm{N} 144^{\circ} 44^{\prime} \mathrm{E}$, Venus bore $235^{\circ}(\mathrm{C}$) at 09 h 18 m 08 s chrono time (error 10 m 04 s fast). Variation was $2.5^{\circ} \mathrm{E}$, find the deviation for the ship's head ?
2. On $23^{\text {rd }}$ Sep, at about 0019 at ship in DR $36^{\circ} 08^{\prime} \mathrm{S} 078^{\circ} 50^{\prime} \mathrm{W}$, Saturn bore 286° (C). If ship's time difference was 5 h from GMT and variation was $3^{\circ} \mathrm{W}$, find the deviation for ship's head ?
3. On $01^{\text {st }}$ May, AM at ship in DR $40^{\circ} 26^{\prime} \mathrm{N} 060^{\circ} 40^{\prime} \mathrm{E}$, Mars bore 096° (C) at 11 h 51 m 14 s by chrono (error 04 m 06 s slow $)$. Variation was $3.7^{\circ} \mathrm{W}$, calculate the deviation of the compass ?
4. On $18^{\text {th }} \mathrm{Jan}$, in $\mathrm{DR} 00^{\circ} 00^{\prime} 062^{\circ} 40^{\prime} \mathrm{E}$, Venus bore $120^{\circ}(\mathrm{C})$ at 0310 ship's time (4 h from GMT). If variation was $2^{\circ} \mathrm{W}$, find compass error and deviation?

Azimuth - Moon

1. On $06^{\text {th }}$ Mar, in DR $30^{\circ} 30 N^{\prime} 140^{\circ} 11^{\prime}$ E, Moon bore $105^{\circ}(\mathrm{C}$) at 07 h 35 m 02 s Chrono time (error 04m 06s fast). If variation was $2^{\circ} \mathrm{E}$, find the deviation ?
2. On $19^{\text {th }}$ Jan, PM at ship in DR $40^{\circ} 58^{\prime} 175^{\circ} 20^{\prime} \mathrm{W}$, Moon's bore 100° (C) at 07 h 40 m 59 s chrono time (error 02 m 06 s fast) . If variation was $6^{\circ} \mathrm{W}$, find compass error and deviation ?
3. On $31^{\text {st }}$ Aug, PM at ship in DR $36^{\circ} 03 \mathrm{~N}^{\prime} 146^{\circ} 50^{\prime} \mathrm{E}$, the Moon's bore $230^{\circ}(\mathrm{C})$ at 08 h 14 m 56 s chrono time (error 02 m 06 s fast). If variation was $3^{\circ} \mathrm{W}$, find compass deviation ?
4. On $30^{\text {th }}$ Nov, at 1950 at ship in DR $20^{\circ} 29 S^{\prime} 017^{\circ} 46^{\prime}$ E, Moon's bore $280^{\circ}(\mathrm{C})$. If ship's time difference was (GMT +1 h) and variation was $3.5^{\circ} \mathrm{E}$, find compass error and deviation ?

Amplitude - Sun

1. December $30^{\text {th }}$ at 0706 hrs LMT in DR Lat $33^{\circ} 24^{\prime} \mathrm{N}$ Long $020^{\circ} 31^{\prime} \mathrm{E}$ the sun rose bearing $126^{\circ} \mathrm{C}$. If the Variation is $1^{\circ} \mathrm{W}$ find the compass error and the deviation.

2 January $11^{\text {th }}$ at 1954 hrs LMT in DR Lat $46^{\circ} 34^{\prime}$ S Long $121^{\circ} 12^{\prime} \mathrm{W}$ the sun set bearing $208^{\circ} \mathrm{C}$. If the Variation is $26^{\circ} \mathrm{E}$ find the compass error and the deviation.

October $7^{\text {th }}$ Lat 1718 hrs LMT in DR Lat $56^{\circ} 10^{\prime} \mathrm{N}$ Long $003^{\circ} 18^{\prime} \mathrm{E}$ the sun set bearing $264^{\circ} \mathrm{C}$. If the Variation is $6^{\circ} \mathrm{W}$ find the compass error and the deviation.

June $9^{\text {th }}$ in DR Lat $8^{\circ} 04^{\prime}$ S Long $028^{\circ} 50^{\prime} \mathrm{W}$ the sun rose bearing $090^{\prime} \mathrm{C}$ when a chronometer, known to be 2 m 53 s slow on GMT showed 8 h 03 m 10 s . If the Variation is $28^{\circ} \mathrm{W}$ find the compass error and Deviation.

July $14^{\text {th }}$ in DR Lat $30^{\circ} 00^{\prime} \mathrm{N}$ Long $135^{\circ} 28^{\prime} \mathrm{E}$ the sun rose bearing $076^{\circ} \mathrm{C}$ when the chronometer, which had no error showed 8 h 05 m 27 s . If the Variation is $5^{\circ} \mathrm{W}$ find the compass error and the deviation.

September $10^{\text {th }}$ in DR Lat $47^{\circ} 30^{\prime} \mathrm{N}$ Long $048^{\circ} 16^{\prime} \mathrm{W}$ the sun set bearing $303^{\circ} \mathrm{C}$. If the Variation is $27^{\circ} \mathrm{W}$ find the compass error and the deviation.
7. (i) From the following information find the compass error and deviation for the direction of the ship's head? Date at the ship $19^{\text {th }}$ February, in DR position $29^{\circ} 29^{\prime} \mathrm{S} 105^{\circ} 51^{\prime} \mathrm{E}$. The Sun rose bearing $108.5^{\circ} \mathrm{C}$ Variation $08^{\circ} \mathrm{W}$
(ii) Briefly explain the considerations to be taken into account before taking the above amplitude?

Amplitude - Moon

1. On $2^{\text {nd }}$ Sept, in DR $40^{\circ} 02^{\prime} S 173^{\circ} 18^{\prime} \mathrm{E}$, the Moon set bearing $243^{\circ} \mathrm{C}$. If the Variation is $2^{\circ} \mathrm{W}$, find the deviation of compass for the ship's head ?
2. On $02^{\text {nd }}$ May, in DR $20^{\circ} 12^{\prime} \mathrm{S} 164^{\circ} 40^{\prime} \mathrm{E}$, the Moon set bearing $290^{\circ} \mathrm{C}$. If the Variation is $2^{\circ} \mathrm{W}$ find the compass error and the deviation for the ship's head ?
3. On $31^{\text {st }}$ Aug, in DR $00^{\circ} 01^{\prime} \mathrm{N} 174^{\circ} 56^{\prime} \mathrm{W}$, the Moon rose bearing $102^{\circ} \mathrm{C}$. If the Variation is $1.7^{\circ} \mathrm{E}$ find the deviation for the compass?
4. On $4^{\text {th }}$ Mar, in DR $42^{\circ} 20^{\prime} \mathrm{N} 064^{\circ} 18^{\prime} \mathrm{W}$, the rising moon bearing $089^{\circ} \mathrm{C}$. If the Variation is $10^{\circ} \mathrm{E}$ find the compass deviation ?
5. On $2^{\text {nd }}$ Sept, in DR $35^{\circ} 06^{\prime} \mathrm{S} 074^{\circ} 12 \mathrm{E}$, the Moon set bearing $260^{\circ} \mathrm{C}$. If the Variation is $12^{\circ} \mathrm{W}$ find the compass error and the deviation ?

Latitude by Meridian Altitude :

Sun:

1. On $23^{\text {rd }}$ Sept, in DR $23^{\circ} 40^{\prime} \mathrm{N} 161^{\circ} 56^{\prime} \mathrm{E}$, the sextant meridian altitude of Sun's lower limb (LL) was $66^{\circ} 10.6^{\prime}$. If IE was 2.3^{\prime} on the arc and HE was 10.5 m , find the PL and the position through which PL passes?
2. On $21^{\text {st }}$ Jan, in DR $24^{\circ} 36^{\prime} \mathrm{S} 110^{\circ} 20^{\prime} \mathrm{W}$, the sextant meridian altitude of Sun's lower limb (LL) was 85° 05.5^{\prime}. If IE was 1.6^{\prime} on the arc and HE was 10 m , find the PL and the position through which PL passes ?
3. On $1^{\text {st }}$ Sept, in DR equator $050^{\circ} 276^{\prime}$ E, the sextant meridian altitude of Sun's uper limb (UL) was 66° 10.6^{\prime}. If IE was 2.3^{\prime} on the arc and HE was 10.5 m , find the PL and the position through which PL passes ?
4. On $1^{\text {st }}$ May, in DR $179^{\circ} 58^{\prime} \mathrm{E}$, the observed altitude of Sun's lower limb (LL) on the meridian was 64° 35.9^{\prime} South of the observer. If HE was 15 m , find the PL and the position through which PL passes ?
5. On $1^{\text {st }}$ Dec, in DR $06^{\circ} 35^{\prime} \mathrm{N} 064^{\circ} 18^{\prime} \mathrm{W}$, owing to hazy horizon to the South, a back angle observation of Sun's lower limb (LL) on the meridian was made and the sextant altitude was found to be 118° 11.8^{\prime}. If IE was 2.4^{\prime} on the arc and HE was 14 m , find the PL and the position through which PL passes ?
6. (i) On the $19^{\text {th }}$ May, in DR position $61^{\circ} 43.1$ 'S $170^{\circ} 42^{\prime} \mathrm{E}$ the sextant altitude of the sun's lower limb on the meridian was $08^{\circ} 19^{\prime} \mathrm{N}$. If the height of eye was 2.0 metres and the index error was 1.5^{\prime} off the arc, find:
(a) the UTC of meridian passage?
(b) the latitude of the observer?
(ii) If the sun was bearing $358^{\circ} \mathrm{G}$ at the time of meridian passage calculate the gyro error.

Moon:

1. On $25^{\text {th }}$ Feb, in DR $10^{\circ} 05^{\prime} \mathrm{N} 103^{\circ} 16^{\prime} \mathrm{E}$, the sextant meridian altitude of Moon's Upper limb (UL) was $56^{\circ} 14.9^{\prime}$. If IE was 1.6^{\prime} on the arc and HE was 12 m , find the PL and the position through which PL passes?
2. On $1^{\text {st }} \mathrm{Dec}$, in DR $20^{\circ} 12^{\prime} \mathrm{S} 164^{\circ} 40^{\prime} \mathrm{E}$, the observed meridian altitude of Moon's lower limb (LL) was $56^{\circ} 40.3^{\prime}$. If HE was 14 m , find the PL and the position through which PL passes ?
3. On $21^{\text {st }}$ July, in DR $37^{\circ} 22^{\prime} \mathrm{N} 096^{\circ} 36^{\prime} \mathrm{W}$, the sextant meridian altitude of Moon's Upper limb (UL) was $62^{\circ} 01.1^{\prime}$. If IE was 0.4^{\prime} off the arc and HE was 17 m , find the PL and the position through which PL passes?
4. On $26^{\text {th }} \mathrm{Feb}$, in DR $50^{\circ} 10^{\prime} \mathrm{S} 064^{\circ} 12^{\prime} \mathrm{E}$, the observed altitude of Moon's lower limb (LL) on the meridian was $63^{\circ} 58.0^{\prime}$. If HE was 20 m , find the PL and the position through which PL passes ?
5. On $29^{\text {th }}$ Nov, in DR longitude $140^{\circ} 12 \mathrm{WE}$, the sextant meridian altitude of Moon's lower limb (LL) was $62^{\circ} 15.6^{\prime}$ North of the observer. If IE was 0.6^{\prime} on the arc and HE was 10 m , find the PL and the position through which PL passes ?

Star :

1. On $1^{\text {st }}$ Dec, $A M$ at ship in DR $45^{\circ} 20^{\prime} S 075^{\circ} 00^{\prime} E$, the sextant meridian altitude of star Procyon was $39^{\circ} 28.8^{\prime}$. If IE was 1.5 off the arc and HE was 25 m , find the PL and the position through which PL passes ?
2. On $4^{\text {th }}$ Mar, in DR $45^{\circ} 10^{\prime} \mathrm{N} 120^{\circ} 30^{\prime} \mathrm{W}$, the sextant meridian altitude of star Antares was $18^{\circ} 26.2^{\prime}$. If IE was 3.2^{\prime} off the arc and HE was 10 m , find the PL and the position through which PL passes ?
3. On $12^{\text {th }}$ Sept, in DR $43^{\circ} 05^{\prime} \mathrm{S} 072^{\circ} 20^{\prime}$ E, the sextant meridian altitude of star Aldebaran was $30^{\circ} 40.2^{\prime}$. If IE was nil and HE was 18 m , find the PL and the position through which PL passes ? State the GMT of Meridian passage ?
4. On $22^{\text {nd }}$ Sept, in DR longitude $090^{\circ} 06^{\prime} E$, the observed altitude of star Rigel on the meridian was 73° 24.2^{\prime} North of the observer. If HE was 15 m , find the PL and the position through which PL passes ? State the GMT of meridian passage ?

7 | Page
5. On $1^{\text {st }}$ May, in DR $30^{\circ} 18^{\prime} \mathrm{N} 135^{\circ} 02^{\prime} \mathrm{W}$, a back angle sextant meridian altitude of star Regulus was $108^{\circ} 16.5^{\prime}$. If IE was 2.4^{\prime} on the arc and HE was 14 m . Required the PL, the position through which PL passes and the GMT of meridian passage ?

Planets:

1. On $15^{\text {th }}$ June, in DR $45^{\circ} 00^{\prime} \mathrm{S} 091^{\circ} 10^{\prime} \mathrm{E}$, the sextant meridian altitude of Jupiter was $35^{\circ} 14.2^{\prime}$. If IE was 0.5^{\prime} on the arc and HE was 9 m , find the PL and the position through which PL passes ?
2. On $5^{\text {th }}$ May, in DR $50^{\circ} 10^{\prime} \mathrm{S} 064^{\circ} 15^{\prime} \mathrm{W}$, the observed meridian altitude of Saturn was $56^{\circ} 00.3^{\prime}$. If HE was 10 m , find the PL and the position through which PL passes ? Also, the nearest second, the GMT of meridian passage ?
3. On $17^{\text {th }}$ Jan, in DR longitude $036^{\circ} 40^{\prime} \mathrm{E}$, the sextant meridian altitude of Jupiter was $37^{\circ} 43.5^{\prime}$ bearing North. If IE was 0.3^{\prime} on the arc and HE was 12 m , find the PL and the position through which PL passes?
4. On $14^{\text {th }}$ Oct, in DR longitude $110^{\circ} 20^{\prime} \mathrm{W}$, the sextant meridian altitude of Mars was $61^{\circ} 14.5^{\prime}$ South of the observer. If IE was 3.6^{\prime} off the arc and HE was 17 m , find the PL and the position through which PL passes?
5. On $30^{\text {th }}$ Nov, in DR $56^{\circ} 07^{\prime} \mathrm{N} 120^{\circ} 04^{\prime} \mathrm{E}$, the sextant meridian altitude of Saturn was $16^{\circ} 24.0^{\prime}$. If IE was 0.6^{\prime} on the arc and HE was 12 m , find the PL and the position through which PL passes ?

Latitude by Ex-meridian Altitude :-

Sun:

1. On $4^{\text {th }}$ March, in DR $27^{\circ} 18^{\prime} \mathrm{N} 168^{\circ} 11^{\prime} \mathrm{W}$, the sextant altitude of Sun's LL near the meridian was 56° 19.8^{\prime} when the chrono showed 11 h 13 m 24 s (error 01 m 20 s slow). If IE was 2.8^{\prime} on the arc and HE was 12 m , find the direction of PL and a position through which to draw it ?
2. On $1^{\text {st }}$ Sept, in DR $23^{\circ} 18^{\prime} \mathrm{N} 165^{\circ} 02^{\prime} \mathrm{E}$, the sextant altitude of Sun's UL near the meridian was 75° 01.7^{\prime} when the chrono showed 00 h 45 m 51 s (error 03 m 21 s slow). If IE was 3.2^{\prime} off the arc and HE was 20 m , find the direction of PL and a position through which to draw it ?
3. On $2^{\text {nd }}$ May, in DR $15^{\circ} 36^{\prime} \mathrm{S} 080^{\circ} 11^{\prime} \mathrm{W}$, the sextant altitude of Sun's LL near the meridian was $58^{\circ} 25.6^{\prime}$ when the chrono showed 05 h 40 m 06 s (error 02 m 18 s fast). If IE was 1.6^{\prime} on the arc and HE was 15 m , find the direction of PL and a position through which to draw it ?
4. On $6^{\text {th }}$ March, in EP $52^{\circ} 12^{\prime} \mathrm{N} 170^{\circ} 40^{\prime}$ E, the sextant altitude of Sun's UL near the meridian was 31° 59.8^{\prime} when the chrono showed 01 h 29 m 20 s (error 01 m 50 s fast). If IE was 2.3^{\prime} on the arc and HE was 40 m , find the direction of PL and a position through which to draw it ?
5. On $21^{\text {st }}$ Jan, in DR $00^{\circ} 00^{\prime} 097^{\circ} 48^{\prime} \mathrm{W}$, the sextant altitude of Sun's LL near the meridian was $69^{\circ} 28.7^{\prime}$ when the chrono showed 06 h 13 m 27 s (error 01 m 50 s fast). If IE was 2.0^{\prime} on the arc and HE was 12 m , find the direction of PL and a position through which to draw it ?

Stars :

1. On $2^{\text {nd }}$ March, PM at ship in $\mathrm{DR} 16^{\circ} 12^{\prime} \mathrm{N} 092^{\circ} 101^{\prime} \mathrm{E}$, the sextant altitude of the star Capella near the meridian was $60^{\circ} 29.4^{\prime}$ when the chrono showed 00 h 30 m 12 s (error 01 m 06 s slow). If IE was 2.0^{\prime} on the arc and HE was 48 m , find the direction of PL and a position through which to draw it ?
2. On $12^{\text {th }}$ Sept, $A M$ at ship in DR $00^{\circ} 30^{\prime} \mathrm{S} 160^{\circ} 20^{\prime} \mathrm{W}$, the sextant altitude of the star Aldebaran near the meridian was $73^{\circ} 09.5^{\prime}$ when the chrono showed 03h 59 m 29 s (error 05 m 03 s fast). If IE was 1.2^{\prime} on the arc and HE was 9 m , find the direction of PL and a position through which to draw it ?
3. On $2^{\text {nd }}$ May, PM at ship in DR $44^{\circ} 11^{\prime} \mathrm{S} 102^{\circ} 40^{\prime} E$, the sextant altitude of the star Pollux near the meridian was $17^{\circ} 14.6^{\prime}$ when the chrono showed 10 h 52 m 08 s (error 02 m 12 s slow). If IE was 3.6^{\prime} on the arc and HE was 12 m , find the direction of PL and the latitude where it cuts the DR longitude ?
4. On $20^{\text {th }}$ Jan, during morning twilight in DR $44^{\circ} 07^{\prime} \mathrm{N} 064^{\circ} 47^{\prime} \mathrm{E}$, the sextant altitude of the star Arcturus near the meridian was $64^{\circ} 58.8^{\prime}$ when the chrono showed 02 h 04 m 54 (error 10 m 58 s slow). If IE was 3.1^{\prime} off the arc and HE was 18 m , find the direction of PL and a position through which to draw it ?
5. On $21^{\text {st }}$ Sept, AM at ship in DR $20^{\circ} 50^{\prime} \mathrm{N} 062^{\circ} 30^{\prime} \mathrm{E}$, the observed altitude of the star Capella near the meridian was $23^{\circ} 07.1^{\prime}$ when the chrono showed 01 h 15 m 06 s (error 00 m 04 s slow). If HE was 10 m , find the direction of PL and the lat where it cuts the DR longitude ?

Planets:

1. On $30^{\text {th }} \mathrm{Nov}, \mathrm{AM}$ at ship in $\mathrm{DR} 34^{\circ} 57^{\prime} \mathrm{N} 119^{\circ} 50^{\prime} \mathrm{E}$, the sextant altitude of Mars near the meridian was $13^{\circ} 23.1^{\prime}$ when the chrono showed 08 h 00 m 39 s (error 05 m 01 s slow). If IE was 0.4^{\prime} on the arc and HE was 17 m , find the direction of PL and a position through which to draw it ?
2. On $3^{\text {rd }}$ May, PM at ship in DR $40^{\circ} 11^{\prime} \mathrm{N} 065^{\circ} 30^{\prime} \mathrm{W}$, the sextant altitude of Jupiter near the meridian was $60^{\circ} 45.4^{\prime}$ when the chrono showed 00 h 13 m 50 s (error 04 m 10 s slow). If IE was 0.3^{\prime} on the arc and HE was 14 m , find the direction of PL and the latitude where it cuts the longitude ?
3. On $30^{\text {th }}$ Nov, PM at ship in DR $56^{\circ} 04^{\prime} \mathrm{N} 120^{\circ} 04^{\prime} \mathrm{E}$, the sextant altitude of Saturn near the meridian was $16^{\circ} 05.6^{\prime}$ when the chrono showed 09 h 01 m 49 s (error 02 m 05 s fast). If IE was nil and HE was 17 m , find the direction of PL and the latitude where it cuts the DR Longitude ?
4. On $14^{\text {th }}$ Otc, during morning twilight DR $63^{\circ} 55^{\prime} \mathrm{N} 110^{\circ} 20^{\prime} \mathrm{W}$, the observed altitude of the Mars near the meridian was $49^{\circ} 09.5^{\prime}$ when the chrono showed 01 h 15 m 20 s (error 01 m 00 s slow). If HE was 10 m , find the direction of PL and a position through which to draw it ?
5. On $4^{\text {th }}$ May, AM at ship in DR $52^{\circ} 13^{\prime} \mathrm{N} 064^{\circ} 15^{\prime} \mathrm{W}$, the observed altitude of the Saturn near the meridian was $53^{\circ} 07.8^{\prime}$ when the chrono showed 10 h 59 m 51 s (error 01 m 51 s fast). If HE was 20 m , find the direction of PL and the latitude where it cuts the DR longitude?

Moon:

1. On $29^{\text {th }} \mathrm{Nov}$, in DR $36^{\circ} 08^{\prime} \mathrm{S} 096^{\circ} 40^{\prime} \mathrm{E}$, the sextant altitude of Moon's UL near the meridian was 68° 53.7 ' when the chrono showed 09 h 18 m 24 s (error 05 m 01 s slow). If IE was 0.2^{\prime} off the arc and HE was 14 m , find the direction of PL and a position through which to draw it ?
2. On $2^{\text {nd }}$ Sept, in DR $39^{\circ} 57^{\prime} \mathrm{N} 179^{\circ} 56^{\prime} \mathrm{E}$, the sextant altitude of Moon's UL near the meridian was 29° 14.2^{\prime} when the chrono showed 04 h 03 m 49 s (error 02 m 23 s fast). If IE was 0.3^{\prime} off the arc and HE was 18 m , find the direction of PL and a position through which to draw it ?
3. On $26^{\text {th }} \mathrm{Feb}$, in $\mathrm{DR} 45^{\circ} 04^{\prime} \mathrm{S} 000^{\circ} 20^{\prime} \mathrm{W}$, the sextant altitude of Moon's LL near the meridian was 68° 58.1^{\prime} when the chrono showed $06 \mathrm{~h} 59 \mathrm{~m} \mathrm{00s}$ (error 02 m 30 s slow). If IE was 0.1^{\prime} on the arc and HE was 14 m , find the direction of PL and the latitude where itcuts the DR longitude?
4. On $6^{\text {th }}$ March, in EP $45^{\circ} 40^{\prime} \mathrm{N} 060^{\circ} 12^{\prime} \mathrm{W}$, the sextant altitude of Moon's UL near the meridian was 52° 19.4^{\prime} when the chrono showed 04 h 47 m 16 s (error 14 m 12 s slow). If IE was 0.4^{\prime} off the arc and HE was 15 m , find the direction of PL and a position through which to draw it ?
5. On $1^{\text {st }} \mathrm{Dec}$, in DR $46^{\circ} 12^{\prime} \mathrm{S} 090^{\circ} 20^{\prime} \mathrm{E}$, the sextant altitude of Moon's UL near the meridian was 49° 46.8^{\prime} when the chrono showed 11 h 03 m 58 s (error 05 m 09 s fast). If IE was 0.6^{\prime} off the arc and HE was 10 m , find the direction of PL and a position through which to draw it ?

Latitude by Pole Star Observations :

Stars:

1. On $1^{\text {st }}$ Sept, $A M$ at ship in $D R 18^{\circ} 00^{\prime} N 178^{\circ} 11^{\prime} \mathrm{E}$, the sextant altitude of the Pole Star was $18^{\circ} 47.4$, at 05h 21 m 08 s by chrono (error 01m 18s slow) if IE was 1.6^{\prime} on the arc and HE 12.5 m . Required PL and the position through to draw the PL ? If the Azimuth was $001^{\circ} \mathrm{C}$, Variation was $1.3^{\circ} \mathrm{E}$. find the deviation for ship;s head ?
2. On the morning of $1^{\text {st }} \mathrm{Dec}$, in DR $47^{\circ} 16^{\prime} \mathrm{N} 143^{\circ} 26^{\prime} \mathrm{E}$, the sextant altitude of the Pole Star was 46° $50.7 \mathrm{~N} 178^{\circ} 11^{\prime} \mathrm{E}$, at 08 h 51 m 15 s by chrono (error 05 m 11 s slow) if IE was 2.1^{\prime} off the arc and HE 17 m . Required PL and the position through to draw the PL ?
3. At about 0330 ship's time on $1^{\text {st }}$ May, in DR longitude $150^{\circ} 00^{\prime} E$, the observed altitude of the Pole Star was $50^{\circ} 46.8$, bearing $005^{\circ} \mathrm{C}$ at 05 h 30 m 30 s by chrono (error nil) if HE 14 m , variation $1^{\circ} \mathrm{E}$.. Required PL and the position through to draw the PL and deviation for ship's head ?
4. On $06^{\text {th }}$ March, at 0200 ship's time in DR $20^{\circ} 37^{\prime} \mathrm{N} 000^{\circ} 00^{\prime}$, the Pole Star was $356^{\circ} \mathrm{C}$. If variation was $3.7^{\prime} \mathrm{W}$, find the deviation for the compass?
5. On $13^{\text {th }}$ Sept, PM at ship in DR $37^{\circ} 26^{\prime} \mathrm{N} 072^{\circ} 46^{\prime} \mathrm{E}$, the Pole Star bore $350^{\circ} \mathrm{C}$ at at 03 h 59 m 03 s by chrono (error 10 m 03 s slow) if IE was 1.6^{\prime} on the arc and HE 12.5 m . Required PL and the position through to draw the PL ? If variation was $10^{\circ} \mathrm{E}$, find deviation for the ship's head ?
6. (i) On the $28^{\text {th }}$ of June, $A M$ a vessel in DR position $43^{\circ} 10^{\prime} \mathrm{N} 037^{\circ} 30^{\prime} \mathrm{W}$ observed the sextant altitude of Polaris during twilight to be $43^{\circ} 41^{\prime}$. The chronometer, which was 6 m 27 s fast on UTC showed 6 h 17 m 03 s . If I.E. was 1 '. 5 on the arc and H.E. was 8.5 metres, find:
(a) the direction of the position line?
(b) the latitude at which it crosses the DR longitude?
(ii) Briefly explain the use of the Nautical Almanac and outline the main contents.

Longitude by Chronometer :-

Sun:

1. On $29^{\text {th }}$ Nov, in DR $26^{\circ} 27^{\prime} \mathrm{N} 130^{\circ} 27^{\prime} \mathrm{W}$, the sextant altitude of Sun's Upper Limb (UL) East of meridian was $28^{\circ} 11.0^{\prime}$ when chron (error 01m 31s fast) showed 05h 49m 20s. If IE was 2.3^{\prime} off the arc and HE was 10 m , find the PL and the position through which PL passes ?
2. On $31^{\text {st }}$ Aug, PM at ship in DR $10^{\circ} 11^{\prime} \mathrm{S} 000^{\circ} 00^{\prime}$, the sextant altitude of Sun's Lower Limb (LL) was 39° 15.0^{\prime} when chron (error 01 m 30 s fast) showed 03 h 11 m 20 s . If IE was 2.5^{\prime} on the arc and HE was 17 m , find the PL and the position through which to draw the PL?
3. On $30^{\text {th }}$ April, in $\operatorname{DR} 00^{\circ} 20^{\prime} \mathrm{N} 060^{\circ} 12^{\prime} \mathrm{W}$, the sextant altitude of Sun's Upper Limb (UL) East of meridian was $44^{\circ} 13.4^{\prime}$ when chron (error 03 m 09 s slow) showed 00 h 57 m 43 s . If IE was 3.1^{\prime} off the arc and HE was 20 m , find the PL and the longitude where it crosses the DR lat ?
4. On $19^{\text {th }}$ Jan, at about 1530 at ship in DR $40^{\circ} 16^{\prime} \mathrm{S} 175^{\circ} 31^{\prime} \mathrm{E}$, the sextant altitude of Sun's Lower Limb (LL) was $43^{\circ} 27.4^{\prime}$ when chron (error 02m 12s fast) showed 03h 50 m 12 s . If IE was 1.5^{\prime} on the arc and HE was 22 m , find the PL and the position through which PL passes ?
5. On $22^{\text {nd }}$ Sept, PM at ship in DR $48^{\circ} 20^{\prime} N 085^{\circ} 40^{\prime}$ E, the sextant altitude of Sun's Upper Limb (UL) East of meridian was $20^{\circ} 14.8^{\prime}$ when chron (error 06 m 18 s slow) showed 10 h 03 m 20 s . If IE was 2.2^{\prime} on the arc and HE was 25 m , find the PL and the position through which PL passes ?

Moon :

11 | Page

1. On $25^{\text {th }}$ Feb, AM at ship in DR $20^{\circ} 04^{\prime} \mathrm{S} 090^{\circ} 04^{\prime} \mathrm{W}$, the sextant altitude of Moon's Upper Limb (UL) was $52^{\circ} 26.8^{\prime}$ at 02 h 56 m 17 s chron time (error 04 m 01 fast). If IE was 0.6^{\prime} off the arc and HE was 19 m , find the PL and the position through which PL passes ?
2. On $1^{\text {st }}$ Sept, PM at ship in DR $20^{\circ} 58^{\prime} \mathrm{N} 120^{\circ} 19^{\prime} \mathrm{W}$, the sextant altitude of Moon's Lower Limb (LL) was $33^{\circ} 06.6^{\prime}$ at 02 h 35 m 55 s chron time (error 10 m 42 s slow). If IE was 0.3^{\prime} off the arc and HE was 30 m , find the PL and the position through which to draw the PL?
3. On $22^{\text {nd }}$ Sept, AM at ship in DR $10^{\circ} 02^{\prime} \mathrm{S} 076^{\circ} 50^{\prime} \mathrm{E}$, the sextant altitude of Moon's Lower Limb (LL) was $44^{\circ} 31.7^{\prime}$ at 00 h 17 m 21 s chron time (error 07 m 28 s slow). If IE was 0.6^{\prime} on the arc and HE was 14 m , find the PL and the position through which passes the PL?
4. On $6^{\text {th }}$ March, AM at ship in DR $00^{\circ} 00^{\prime} 060^{\circ} 50^{\prime} \mathrm{W}$, the sextant altitude of Moon's Upper Limb (UL) was $44^{\circ} 28.9^{\prime}$ at 02 h 44 m 48 s chron time (error 11 m 16 s slow). If IE was 0.4^{\prime} off the arc and HE was 15 m , find the PL and the position through which to draw the PL?
5. On $30^{\text {th }}$ Nov, PM at ship in DR $27^{\circ} 45^{\prime} \mathrm{S} 140^{\circ} 20^{\prime} \mathrm{W}$, the observed altitude of Moon's Upper Limb (UL) was $40^{\circ} 18.8^{\prime}$ at 11 h 10 m 08 s chron time (error 00 m 02 s slow). If HE was 10 m , find the PL and the longitude where it cuts the DR lat?

Stars :

1. On $23^{\text {rd }}$ Aug, PM at ship in DR $34^{\circ} 31^{\prime} \mathrm{S} 003^{\circ} 30^{\prime} \mathrm{W}$, the sextant altitude of star Spica was $45^{\circ} 27.2^{\prime}$ at 06 h 15 m 00 s chron time (error 02 m 19 s slow). If IE was 2.1^{\prime} on the arc and HE was 11 m , find the PL and the position through which to draw the PL?
2. On $29^{\text {th }}$ Nov, AM at ship in DR $25^{\circ} 30^{\prime} \mathrm{S} 107^{\circ} 20^{\prime} \mathrm{W}$, the sextant altitude of star Rigel was $35^{\circ} 10.3^{\prime}$ at 11 h 32 m 10 s chron time (error 02 m 50 s fast) . If IE was 2.8^{\prime} on the arc and HE was 12 m , find the PL and the position through which passes the PL?
3. On $22^{\text {nd }}$ Sept, PM at ship in DR $60^{\circ} 10^{\prime} \mathrm{N} 092^{\circ} 27^{\prime} \mathrm{E}$, the sextant altitude of star Arcturus was $25^{\circ} 01^{\prime}$ when Chron (error 05 m 01 s slow) showed 00 h 46 m 31 s . If IE was 0.2^{\prime} on the arc and HE was 17 m , find the PL and the longitude where it cuts the DR lat?
4. On $19^{\text {th }}$ Jan, at about 1900 at ship in DR $00^{\circ} 02^{\prime} \mathrm{N} 170^{\circ} 50^{\prime} \mathrm{E}$, the sextant altitude of star Betelgeuse was $43^{\circ} 11.1^{\prime}$ when chrono showed 07 h 35 m 02 s (error 01 m 18 s fast). If IE was 1.3^{\prime} off the arc and HE was 18 m , find the PL and the position through which to draw the PL?
5. On $31^{\text {st }}$ Aug, AM at ship in DR $40^{\circ} 30^{\prime} \mathrm{N} 064^{\circ} 56^{\prime} \mathrm{E}$, the sextant altitude of star Diphda was $21^{\circ} 23.4^{\prime}$ at 00 h 20 m 26 s chron time (error nil) . If IE was 0.9^{\prime} off the arc and HE was 9 m , find the PL and the position through which to draw the PL?

Planets:

1. On $21^{\text {st }}$ Aug, in $\mathrm{DR} 60^{\circ} 06^{\prime} \mathrm{N} 066^{\circ} 18^{\prime} \mathrm{W}$, the sextant altitude of Mars was $41^{\circ} 32.4^{\prime}$ at 08 h 15 m 02 s GMT . If IE was 2.1^{\prime} on the arc and HE was 10 m , find the PL and the position through which to draw the PL?
2. On $17^{\text {th }}$ Jan, $A M$ at ship in DR $31^{\circ} 41^{\prime} \mathrm{N} 100^{\circ} 10^{\prime} \mathrm{E}$, the sextant altitude of Venus was $19^{\circ} 48.6^{\prime}$ when the chrono showed 11 h 41 m 44 s (error 02 m 06 s fast). If IE was 2.1^{\prime} on the arc and HE was 12 m , find the PL and the position through which to it ?
3. On $1^{\text {st }} \mathrm{Dec}, \mathrm{PM}$ at ship in DR $29^{\circ} 56^{\prime} \mathrm{S} 106^{\circ} 14^{\prime} \mathrm{E}$, the sextant altitude of Saturn was $46^{\circ} 21.8^{\prime}$ at 12 h 18 m 33 s chron time (error 05 m 01 s slow). If IE was 1.3^{\prime} off the arc and HE was 14 m , find the PL and the position through which to draw the PL?
4. On $22^{\text {nd }}$ Sept, PM at ship in DR $40^{\circ} 21^{\prime} \mathrm{S} 140^{\circ} 12^{\prime} \mathrm{W}$, the sextant altitude of Saturn was $54^{\circ} 58.6^{\prime}$ when chrono showed 04 h 15 m 42 s (error 11 m 31 s fast). If IE was 3.2^{\prime} on the arc and HE was 20 m , required the direction of PL and a position through which to draw the PL?
5. On $1^{\text {st }}$ May, PM at ship in DR $19^{\circ} 54^{\prime} \mathrm{S} 179^{\circ} 58^{\prime} \mathrm{W}$, the sextant altitude of Jupiter was $52^{\circ} 38.5^{\prime}$ at 06 h 21 m 52 s chron time (error 01 m 10 s fast). If IE was 0.2^{\prime} off the arc and HE was 17 m , find the PL and the position through which to draw the PL?

Intercept:-

Sun :

1. On $29^{\text {th }} \mathrm{Nov}$, in DR $26^{\circ} 27^{\prime} \mathrm{N} 130^{\circ} 27^{\prime} \mathrm{W}$, the sextant altitude of Sun's Upper Limb (UL) East of meridian was $28^{\circ} 11.0^{\prime}$ when chron (error 01m 31s fast) showed 05 h 49 m 20 s . If IE was 2.3^{\prime} off the arc and HE was 10 m , find the PL and the position through which PL passes ?
2. On $31^{\text {st }}$ Aug, PM at ship in DR $10^{\circ} 11^{\prime} \mathrm{S} 000^{\circ} 00^{\prime}$, the sextant altitude of Sun's Lower Limb (LL) was 39° 15.0^{\prime} when chron (error 01m 30s fast) showed 03h 11 m 20 s . If IE was 2.5^{\prime} on the arc and HE was 17 m , find the PL and the position through which to draw the PL?
3. On $30^{\text {th }}$ April, in $\operatorname{DR~} 00^{\circ} 20^{\prime} \mathrm{N} 060^{\circ} 12^{\prime} \mathrm{W}$, the sextant altitude of Sun's Upper Limb (UL) East of meridian was $44^{\circ} 13.4^{\prime}$ when chron (error 03m 09s slow) showed 00 h 57 m 43 s . If IE was 3.1^{\prime} off the arc and HE was 20 m , find the PL and the longitude where it crosses the DR lat ?
4. On $19^{\text {th }}$ Jan, at about 1530 at ship in DR $40^{\circ} 16^{\prime} \mathrm{S} 175^{\circ} 31^{\prime} \mathrm{E}$, the sextant altitude of Sun's Lower Limb (LL) was $43^{\circ} 27.4^{\prime}$ when chron (error 02 m 12 s fast) showed 03 h 50 m 12 s . If IE was 1.5^{\prime} on the arc and HE was 22 m , find the PL and the position through which PL passes ?
5. On $22^{\text {nd }}$ Sept, PM at ship in DR $48^{\circ} 20^{\prime} \mathrm{N} 085^{\circ} 40^{\prime}$ E, the sextant altitude of Sun's Upper Limb (UL) East of meridian was $20^{\circ} 14.8^{\prime}$ when chron (error 06 m 18 s slow) showed 10 h 03 m 20 s . If IE was 2.2^{\prime} on the arc and HE was 25 m , find the PL and the position through which PL passes ?

Moon :

1. On $25^{\text {th }}$ Feb, AM at ship in DR $20^{\circ} 04^{\prime} \mathrm{S} 090^{\circ} 04^{\prime} \mathrm{W}$, the sextant altitude of Moon's Upper Limb (UL) was $52^{\circ} 26.8^{\prime}$ at 02 h 56 m 17 s chron time (error 04 m 01 fast). If IE was 0.6^{\prime} off the arc and HE was 19 m , find the PL and the position through which PL passes ?
2. On $1^{\text {st }}$ Sept, PM at ship in DR $20^{\circ} 58^{\prime} \mathrm{N} 120^{\circ} 19^{\prime} \mathrm{W}$, the sextant altitude of Moon's Lower Limb (LL) was $33^{\circ} 06.6^{\prime}$ at 02 h 35 m 55 s chron time (error 10 m 42 s slow). If IE was 0.3^{\prime} off the arc and HE was 30 m , find the PL and the position through which to draw the PL?
3. On $22^{\text {nd }}$ Sept, AM at ship in DR $10^{\circ} 02^{\prime} \mathrm{S} 076^{\circ} 50^{\prime} \mathrm{E}$, the sextant altitude of Moon's Lower Limb (LL) was $44^{\circ} 31.7^{\prime}$ at 00 h 17 m 21 s chron time (error 07 m 28 s slow). If IE was 0.6^{\prime} on the arc and HE was 14 m , find the PL and the position through which passes the PL?
4. On $6^{\text {th }}$ March, AM at ship in $\mathrm{DR} 00^{\circ} 00^{\prime} 060^{\circ} 50^{\prime} \mathrm{W}$, the sextant altitude of Moon's Upper Limb (UL) was $44^{\circ} 28.9^{\prime}$ at 02 h 44 m 48 s chron time (error 11 m 16 s slow). If IE was 0.4^{\prime} off the arc and HE was 15 m , find the PL and the position through which to draw the PL?
5. On $30^{\text {th }}$ Nov, PM at ship in DR $27^{\circ} 45^{\prime} \mathrm{S} 140^{\circ} 20^{\prime} \mathrm{W}$, the observed altitude of Moon's Upper Limb (UL) was $40^{\circ} 18.8^{\prime}$ at 11 h 10 m 08 s chron time (error 00 m 02 s slow). If HE was 10 m , find the PL and the longitude where it cuts the DR lat?

Stars :

1. On $23^{\text {rd }}$ Aug, PM at ship in DR $34^{\circ} 31^{\prime} \mathrm{S} 003^{\circ} 30^{\prime} \mathrm{W}$, the sextant altitude of star Spica was $45^{\circ} 27.2^{\prime}$ at 06 h 15 m 00 s chron time (error 02 m 19 s slow). If IE was 2.1^{\prime} on the arc and HE was 11 m , find the PL and the position through which to draw the PL?
2. On $29^{\text {th }}$ Nov, AM at ship in DR $25^{\circ} 30^{\prime} \mathrm{S} 107^{\circ} 20^{\prime} \mathrm{W}$, the sextant altitude of star Rigel was $35^{\circ} 10.3^{\prime}$ at 11 h 32 m 10 s chron time (error 02 m 50 s fast) . If IE was 2.8^{\prime} on the arc and HE was 12 m , find the PL and the position through which passes the PL?
3. On $22^{\text {nd }}$ Sept, PM at ship in DR $60^{\circ} 10^{\prime} \mathrm{N} 092^{\circ} 27^{\prime} \mathrm{E}$, the sextant altitude of star Arcturus was $25^{\circ} 01^{\prime}$ when Chron (error 05 m 01 s slow) showed 00 h 46 m 31 s . If IE was 0.2^{\prime} on the arc and HE was 17 m , find the PL and the longitude where it cuts the DR lat?
4. On $19^{\text {th }}$ Jan, at about 1900 at ship in DR $00^{\circ} 02^{\prime} \mathrm{N} 170^{\circ} 50^{\prime} \mathrm{E}$, the sextant altitude of star Betelgeuse was $43^{\circ} 11.1^{\prime}$ when chrono showed 07 h 35 m 02 s (error 01 m 18 s fast). If IE was 1.3^{\prime} off the arc and HE was 18 m , find the PL and the position through which to draw the PL?
5. On $31^{\text {st }}$ Aug, AM at ship in DR $40^{\circ} 30^{\prime} \mathrm{N} 064^{\circ} 56^{\prime} \mathrm{E}$, the sextant altitude of star Diphda was $21^{\circ} 23.4^{\prime}$ at 00h 20 m 26 s chron time (error nil). If IE was 0.9^{\prime} off the arc and HE was 9 m , find the PL and the position through which to draw the PL?

Planets:

1. On $21^{\text {st }}$ Aug, in $\mathrm{DR} 60^{\circ} 06^{\prime} \mathrm{N} 066^{\circ} 18^{\prime} \mathrm{W}$, the sextant altitude of Mars was $41^{\circ} 32.4^{\prime}$ at 08 h 15 m 02 s sMT . If IE was 2.1^{\prime} on the arc and HE was 10 m , find the PL and the position through which to draw the PL?
2. On $17^{\text {th }}$ Jan, $A M$ at ship in DR $31^{\circ} 41^{\prime} \mathrm{N} 100^{\circ} 10^{\prime} \mathrm{E}$, the sextant altitude of Venus was $19^{\circ} 48.6^{\prime}$ when the chrono showed 11 h 41 m 44 s (error 02 m 06 s fast) . If IE was 2.1^{\prime} on the arc and HE was 12 m , find the PL and the position through which to it ?
3. On $1^{\text {st }}$ Dec, PM at ship in DR $29^{\circ} 56^{\prime} \mathrm{S} 106^{\circ} 14^{\prime} \mathrm{E}$, the sextant altitude of Saturn was $46^{\circ} 21.8^{\prime}$ at 12 h 18 m 33 s chron time (error 05 m 01 s slow). If IE was 1.3^{\prime} off the arc and HE was 14 m , find the PL and the position through which to draw the PL?
4. On $22^{\text {nd }}$ Sept, PM at ship in DR $40^{\circ} 21^{\prime} \mathrm{S} 140^{\circ} 12^{\prime} \mathrm{W}$, the sextant altitude of Saturn was $54^{\circ} 58.6^{\prime}$ when chrono showed 04 h 15 m 42 s (error 11 m 31 s fast). If IE was 3.2^{\prime} on the arc and HE was 20 m , required the direction of PL and a position through which to draw the PL?
5. On $1^{\text {st }}$ May, PM at ship in DR $19^{\circ} 54^{\prime} \mathrm{S} 179^{\circ} 58^{\prime} \mathrm{W}$, the sextant altitude of Jupiter was $52^{\circ} 38.5^{\prime}$ at 06 h 21 m 52 s chron time (error 01 m 10 s fast). If IE was 0.2^{\prime} off the arc and HE was 17 m , find the PL and the position through which to draw the PL?

Computation of Altitudes:

1. On $23^{\text {rd }}$ Sept, in DR $23^{\circ} 40^{\prime} \mathrm{N} 161^{\circ} 56^{\prime} \mathrm{E}$, compute the sextant meridian altitude of Sun's LL if IE was 2.3^{\prime} on the arc and HE was 10.5 m ?
2. On $25^{\text {th }} \mathrm{Feb}$, in DR $10^{\circ} 13^{\prime} \mathrm{N} 103^{\circ} 16^{\prime} \mathrm{E}$, compute the sextant meridian altitude of Moon's UL if IE was 1.6^{\prime} on the arc and HE was 12 m ?
3. On $1^{\text {st }}$ Sept, in DR $17^{\circ} 54^{\prime} \mathrm{N} 178^{\circ} 11^{\prime} \mathrm{E}$, compute the sextant altitude of Pole Star at 05 h 21 m 08s Chrono time (error 01m 18s slow) if IE was 1.6^{\prime} on the arc and HE was 12.5 m ?
4. On $23^{\text {rd }}$ Aug, in DR $34^{\circ} 31^{\prime} \mathrm{S} 003^{\circ} 30^{\prime} \mathrm{W}$, compute the sextant altitude of star Spica when chrono showed 06 h 15 m 00 s (error 02 m 19 s slow) if IE was 2.1^{\prime} on the arc and HE was 11 m ?
5. On $6^{\text {th }}$ March, in DR $00^{\circ} 00^{\prime} 065^{\circ} 50^{\prime} \mathrm{W}$, compute the sextant altitude of moon's UL at 02 h 44 m 48 s chrono time (error 11 m 16 s fast) if IE was 0.4^{\prime} on the arc and HE was 15 m ?
6. On $5^{\text {th }}$ May, in DR $50^{\circ} 16^{\prime} \mathrm{S} 064^{\circ} 15^{\prime} \mathrm{W}$, compute the sextant meridian altitude of Saturn, if IE was nil and HE was 10 m ?

Simple Errors in Sight :-

1. Using DR $44^{\circ} 36^{\prime} \mathrm{N} 089^{\circ} 23^{\prime} \mathrm{E}$, a celestrial observation gave an intercept of 1.7' Towards Az $130^{\circ} \mathrm{T}$. It was subsequently discovered that the IE of 2.4^{\prime} ON the arc had been apllied OFF the arc. Find the new intercept ?
2. Using DR $43^{\circ} 32^{\prime} \mathrm{N}$ an observed long $069^{\circ} 52.8^{\prime} \mathrm{E}$ and an Az of $043.8^{\circ} \mathrm{T}$ was obtained. It was subsequently discovered that the HE used for the calculations was taken as 38 m instead of 14 m . Find where the PL should be drawn ?
3. An ex-meridian altitude of Sun gave Observed lat $43^{\circ} 12^{\prime} \mathrm{N}, \mathrm{DR}$ long $063^{\circ} 29^{\prime} \mathrm{W}, \mathrm{AZ} 177.4^{\circ} \mathrm{T}$. It was then found that the UL correction (-18.2^{\prime}) had been used in the calculations instead of LL correction (+ 14.1'). State where the PL should be drawn ?
4. Using lat $20^{\circ} 46^{\prime} \mathrm{S}$ an observation of the Sun gave an Obs Long of $119^{\circ} 17.8^{\prime} \mathrm{W}$ and Az of $201^{\circ} \mathrm{T}$. Later it was found that Chron error of 02 m 24 s slow had not been applied. Find where the PL should be drawn ?
5. Using DR $36^{\circ} 29^{\prime} \mathrm{N} 116^{\circ} 14^{\prime} \mathrm{E}$, an intercept of 3.7^{\prime} Towards from Az $302^{\circ} \mathrm{T}$ was obtained. It was then discovered that the intercept used for 58 m 12 s was taken from Almanac for Sun instead of Aries. Find where the PL should be drawn ?
6. Using DR $46^{\circ} 55^{\prime} S 133^{\circ} 48^{\prime} \mathrm{W}$, an intercept of 2.5^{\prime} Away from Az $139^{\circ} \mathrm{T}$ was obtained. It was subsequently discovered that the increment used for 44 m 28 s was taken from Almanac for the Sun instead of aries. Find where the PL should be drawn?

Plotting Position Lines (Simultaneous Obs) :-

1. Using DR $51^{\circ} 25^{\prime} \mathrm{N} 006^{\circ} 10^{\prime} \mathrm{W}$, Star A Az $312^{\circ} \mathrm{T}$ and Intercept 3.4' Towards, Star B Az $254^{\circ} \mathrm{T}$ and Intercept 1.0' away. Find the vessel's position ?
2. Using DR $51^{\circ} 38.5^{\prime} \mathrm{N}, 006^{\circ} 50.0^{\prime} \mathrm{W}$, the following information was obtained from simultaneous observations of two stars using -

Star A; Azimuth $050^{\circ} \quad$ Intercept 1.5° away.
Star B; Azimuth $140^{\circ} \quad$ Intercept 1.5° towards.
Find the position of the vessel.
3. The following information was obtained from simultaneous observations of two stars using DR 51° $30.8^{\prime} \mathrm{N}, 006^{\circ} 45.0^{\prime} \mathrm{W}$ -

Star A; Azimuth $077^{\circ} \quad$ Intercept 3.0' away.
Star B; Azimuth $170^{\circ} \quad$ Intercept 1.2^{\prime} towards.
Find the position of the vessel.
4. $\quad \operatorname{sIn} \operatorname{DR} 20^{\circ} 36^{\prime} N 146^{\circ} 11^{\prime} \mathrm{W}$, Star Spica bore $046^{\circ} \mathrm{T}$ giving an obs long of $146^{\circ} 13.4^{\prime} \mathrm{W}$. At the same time star Deneb bore $130^{\circ} \mathrm{T}$ giving an Obs long of $146^{\circ} 19.3^{\prime} \mathrm{W}$. Find the vessel's position ?
5. Using DR $48^{0} 24^{\prime} N 179^{\circ} 59^{\prime} E$, find the vessel's position from the following two observations -
i) Obs long $179^{\circ} 55.4^{\prime} \mathrm{W}$ Az $030^{\circ} \mathrm{T}$, ii) Int 0.5^{\prime} Towards Az $335^{\circ} \mathrm{T}$,
6. Using DR $49^{\circ} 11^{\prime} \mathrm{S} 147^{\circ} 44^{\prime} \mathrm{E}$, an Obs long of $147^{\circ} 50.2^{\prime} \mathrm{E}$ and Az of $300^{\circ} \mathrm{T}$ were obtained. A meridian altitude then gave latitude to be $49^{\circ} 14.5^{\prime}$ S. Find the vessel's position ?
7. In DR $60^{\circ} 41^{\prime} \mathrm{N} 052^{\circ} 27^{\prime} \mathrm{W}$, an intercept of 2.1^{\prime} Away from Az $225^{\circ} \mathrm{T}$ was obtained. At the same time, an ex-mer alt gave an Ob slat of $60^{\circ} 36.2^{\prime} \mathrm{N}$ and an $\mathrm{Az} 357^{\circ} \mathrm{T}$. Find the vessel's position ?
8. In DR $40^{\circ} 01^{\prime} \mathrm{N} 110^{\circ} 30^{\prime} \mathrm{E}$, star Aldebaran - Obs long $110^{\circ} \mathrm{b} 34.2^{\prime} \mathrm{E}, \mathrm{Az} 120^{\circ} \mathrm{T}$ was obtained. At the same time, Polaris - Obs lat $39^{\circ} 58.1^{\prime} \mathrm{N}$, bearing $002^{\circ} \mathrm{T}$. Find the vessel's position ?

Running Fix (Staggered Obs) :-

1. At 0740 hrs in $\mathrm{DR} 51^{\circ} 24^{\prime} \mathrm{N} 006^{\circ} 51$ ' W , a vessel steering $056^{\circ} \mathrm{T}$ at 7 knots obtains a sight of the Sun resulting in a bearing of $094^{\circ} \mathrm{T}$ and an intercept of 1.9^{\prime} towards. At 1200 hrs a newly charted oil production platform in position $51^{\circ} 41.0^{\prime} \mathrm{N} 006^{\circ} 15.6^{\prime} \mathrm{W}$ was observed bearing $267^{\circ} \mathrm{T}$.

Find the position of the vessel at 1200 hrs ?
2. At 0930 in DR position $51^{\circ} 22^{\prime} \mathrm{N} 006^{\circ} 10^{\prime} \mathrm{W}$ an observation of the Sun gave a bearing of $082^{\circ} \mathrm{T}$ and an intercept 0.8^{\prime} towards. Ship steering $310^{\circ} \mathrm{T}$, Speed 8 knots. At 1200 hrs a Meridian Altitude of the Sun gave a Latitude of $51^{\circ} 37.0^{\prime} \mathrm{N}$.
Find the vessels position at 1200 ?
3. At 1015 in DR position $51^{\circ} 40^{\prime} \mathrm{N} 006^{\circ} 47.5^{\prime} \mathrm{W}$ a vessel is drifting South at a rate of 2.5 . knots. At the same time a sight of the Sun produced a bearing of $068^{\circ} \mathrm{T}$ and an intercept of 2.6' away. At 1200 hrs a meridian altitude of the Sun gave a Latitude of $51^{\circ} 32.2^{\prime} \mathrm{N}$.
Determine the vessels position at both 1200 ?
4. At 0900 hrs in $\mathrm{DR} 51^{\circ} 21^{\prime} \mathrm{N} 006^{\circ} 50^{\prime} \mathrm{W}$ an observation of the Sun gave a bearing of $090^{\circ} \mathrm{T}$ and an Intercept 1.0^{\prime} towards. At 1200 hrs a Meridian Altitude of the Sun gave a Latitude of $51^{\circ} 35.6^{\prime} \mathrm{N}$. If the vessel was steering $025^{\circ} \mathrm{T}$ at 5 knots throughout, find the vessels position at 1200 hrs ?
5. In DR $18^{\circ} 41^{\prime} \mathrm{S} 179^{\circ} 56^{\prime} \mathrm{E}$, an intercept of 8.4^{\prime} Towards $\mathrm{Az} 083^{\circ} \mathrm{T}$ was obtained by stellar observation. The vessel then steered $121^{\circ} \mathrm{T}$ for 70 M by log when a meridian altitude gave an Ob slat of $19^{\circ} 14.9^{\prime}$. If a set of $224^{\circ} \mathrm{T}$ and drift of 10 M was experienced during the period. Find vessel's position at the time of second observation.
6. At 0600 in $D R 01^{\circ} 20^{\prime} \mathrm{N} 179^{\circ} 58^{\prime} \mathrm{W}$, a stellar observation gave an Obs long of $179^{\circ} 54^{\prime} \mathrm{E}$ bearing $062^{\circ} \mathrm{T}$. The vessel then steamed $131^{\circ} \mathrm{T}$ at 14 kts . At 1600 , using lat $00^{\circ} 11.8^{\prime} \mathrm{S}$, the Sun gave an Obs long of 178° $12.7^{\prime} \mathrm{W}$ bearing $323^{\circ} \mathrm{T}$. Find the vessel position at 1600 ?
7. In DR $36^{\circ} 48^{\prime} \mathrm{S} 110^{\circ} 37^{\prime} \mathrm{E}$, an Ex-meridian sight gave an Ob slat of $37^{\circ} 00^{\prime} \mathrm{S}$ and a PL of $100^{\circ}-280^{\circ} \mathrm{T}$. After steaming $000^{\circ} \mathrm{T}$ for 87 M and $270^{\circ} \mathrm{T}$ for 101 M , an intercept of 7.2 N Away from $\mathrm{Az} 086^{\circ} \mathrm{T}$ was obtained working from the earlier Ob slat. Find the position of the ship at the second observation ?

